| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwmnd.b |  |-  ( Base ` M ) = ~P A | 
						
							| 2 |  | pwmnd.p |  |-  ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) | 
						
							| 3 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 4 | 1 | eqcomi |  |-  ~P A = ( Base ` M ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 6 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 7 |  | id |  |-  ( (/) e. ~P A -> (/) e. ~P A ) | 
						
							| 8 | 1 2 | pwmndgplus |  |-  ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = ( (/) u. z ) ) | 
						
							| 9 |  | 0un |  |-  ( (/) u. z ) = z | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = z ) | 
						
							| 11 | 1 2 | pwmndgplus |  |-  ( ( z e. ~P A /\ (/) e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) | 
						
							| 13 |  | un0 |  |-  ( z u. (/) ) = z | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = z ) | 
						
							| 15 | 4 5 6 7 10 14 | ismgmid2 |  |-  ( (/) e. ~P A -> (/) = ( 0g ` M ) ) | 
						
							| 16 | 15 | eqcomd |  |-  ( (/) e. ~P A -> ( 0g ` M ) = (/) ) | 
						
							| 17 | 3 16 | ax-mp |  |-  ( 0g ` M ) = (/) |