Metamath Proof Explorer


Theorem qlaxr4i

Description: One of the conditions showing CH is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr4.1 𝐴C
qlaxr4.2 𝐵C
qlaxr4.3 𝐴 = 𝐵
Assertion qlaxr4i ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ 𝐵 )

Proof

Step Hyp Ref Expression
1 qlaxr4.1 𝐴C
2 qlaxr4.2 𝐵C
3 qlaxr4.3 𝐴 = 𝐵
4 3 fveq2i ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ 𝐵 )