Metamath Proof Explorer


Theorem qlaxr4i

Description: One of the conditions showing CH is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr4.1
|- A e. CH
qlaxr4.2
|- B e. CH
qlaxr4.3
|- A = B
Assertion qlaxr4i
|- ( _|_ ` A ) = ( _|_ ` B )

Proof

Step Hyp Ref Expression
1 qlaxr4.1
 |-  A e. CH
2 qlaxr4.2
 |-  B e. CH
3 qlaxr4.3
 |-  A = B
4 3 fveq2i
 |-  ( _|_ ` A ) = ( _|_ ` B )