Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
| qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
| qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | qliftel1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 𝐹 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| 2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
| 3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) | 
| 6 | 1 5 2 | fliftel1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 𝐹 𝐴 ) |