Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) | |
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) | ||
| qlift.3 | |- ( ph -> R Er X ) | ||
| qlift.4 | |- ( ph -> X e. V ) | ||
| Assertion | qliftel1 | |- ( ( ph /\ x e. X ) -> [ x ] R F A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) | |
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) | |
| 3 | qlift.3 | |- ( ph -> R Er X ) | |
| 4 | qlift.4 | |- ( ph -> X e. V ) | |
| 5 | 1 2 3 4 | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) | 
| 6 | 1 5 2 | fliftel1 | |- ( ( ph /\ x e. X ) -> [ x ] R F A ) |