| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
| 2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
| 3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
| 4 |
|
opex |
|- <. A , B >. e. _V |
| 5 |
|
eqid |
|- ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) |
| 6 |
5
|
elrnmpt1 |
|- ( ( x e. X /\ <. A , B >. e. _V ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 7 |
4 6
|
mpan2 |
|- ( x e. X -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ x e. X ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 9 |
8 1
|
eleqtrrdi |
|- ( ( ph /\ x e. X ) -> <. A , B >. e. F ) |
| 10 |
|
df-br |
|- ( A F B <-> <. A , B >. e. F ) |
| 11 |
9 10
|
sylibr |
|- ( ( ph /\ x e. X ) -> A F B ) |