Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | qseq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | |
2 | qseq2 | ⊢ ( 𝐶 = 𝐷 → ( 𝐵 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) | |
3 | 1 2 | sylan9eq | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |