Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qseq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | |
| 2 | qseq2 | ⊢ ( 𝐶 = 𝐷 → ( 𝐵 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) | |
| 3 | 1 2 | sylan9eq | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |