| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 2 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 3 |
1 2
|
bianbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 4 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 5 |
4
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 6 |
|
df-3an |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 7 |
3 5 6
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |