Description: Obsolete version of r19.29d2r as of 4-Nov-2024. (Contributed by Thierry Arnoux, 30-Jan-2017) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | r19.29d2r.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) | |
| r19.29d2r.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) | ||
| Assertion | r19.29d2rOLD | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29d2r.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) | |
| 2 | r19.29d2r.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) | |
| 3 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) | 
| 5 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) | |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) | 
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) |