| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-r1 |
⊢ 𝑅1 = rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) |
| 2 |
1
|
dmeqi |
⊢ dom 𝑅1 = dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ) |
| 4 |
|
rdglimg |
⊢ ( ( 𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) ) |
| 5 |
3 4
|
sylanb |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) ) |
| 6 |
1
|
fveq1i |
⊢ ( 𝑅1 ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) |
| 7 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 8 |
7
|
simpli |
⊢ Fun 𝑅1 |
| 9 |
|
funiunfv |
⊢ ( Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ 𝐴 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ 𝐴 ) |
| 11 |
1
|
imaeq1i |
⊢ ( 𝑅1 “ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 12 |
11
|
unieqi |
⊢ ∪ ( 𝑅1 “ 𝐴 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 13 |
10 12
|
eqtri |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) = ∪ ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) |
| 14 |
5 6 13
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |