Metamath Proof Explorer


Theorem ralcom4f

Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis ralcom4f.1 𝑦 𝐴
Assertion ralcom4f ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ralcom4f.1 𝑦 𝐴
2 nfcv 𝑥 V
3 1 2 ralcomf ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀ 𝑦 ∈ V ∀ 𝑥𝐴 𝜑 )
4 ralv ( ∀ 𝑦 ∈ V 𝜑 ↔ ∀ 𝑦 𝜑 )
5 4 ralbii ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀ 𝑥𝐴𝑦 𝜑 )
6 ralv ( ∀ 𝑦 ∈ V ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )
7 3 5 6 3bitr3i ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )