Description: Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralim6dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| Assertion | ralimd6v | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralim6dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | ralimdvv | ⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |
| 3 | 2 | ralimd4v | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |