Description: An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rankxpl.1 | ⊢ 𝐴 ∈ V | |
rankxpl.2 | ⊢ 𝐵 ∈ V | ||
Assertion | rankfu | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankxpl.1 | ⊢ 𝐴 ∈ V | |
2 | rankxpl.2 | ⊢ 𝐵 ∈ V | |
3 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) | |
4 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
5 | 4 | rankss | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( rank ‘ 𝐹 ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
6 | 1 2 | rankxpu | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
7 | 5 6 | sstrdi | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
8 | 3 7 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |