Metamath Proof Explorer


Theorem rankfu

Description: An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Hypotheses rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion rankfu ( 𝐹 : 𝐴𝐵 → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rankxpl.1 𝐴 ∈ V
2 rankxpl.2 𝐵 ∈ V
3 fssxp ( 𝐹 : 𝐴𝐵𝐹 ⊆ ( 𝐴 × 𝐵 ) )
4 1 2 xpex ( 𝐴 × 𝐵 ) ∈ V
5 4 rankss ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( rank ‘ 𝐹 ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) )
6 1 2 rankxpu ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴𝐵 ) )
7 5 6 sstrdi ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴𝐵 ) ) )
8 3 7 syl ( 𝐹 : 𝐴𝐵 → ( rank ‘ 𝐹 ) ⊆ suc suc ( rank ‘ ( 𝐴𝐵 ) ) )