| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxpl.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
rankxpl.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
xpsspw |
⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |
| 4 |
1 2
|
unex |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
| 5 |
4
|
pwex |
⊢ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V |
| 6 |
5
|
pwex |
⊢ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V |
| 7 |
6
|
rankss |
⊢ ( ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) → ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 |
3 7
|
ax-mp |
⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 9 |
5
|
rankpw |
⊢ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 10 |
4
|
rankpw |
⊢ ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 11 |
|
suceq |
⊢ ( ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 13 |
9 12
|
eqtri |
⊢ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 14 |
8 13
|
sseqtri |
⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |