| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxpl.1 |
|- A e. _V |
| 2 |
|
rankxpl.2 |
|- B e. _V |
| 3 |
|
xpsspw |
|- ( A X. B ) C_ ~P ~P ( A u. B ) |
| 4 |
1 2
|
unex |
|- ( A u. B ) e. _V |
| 5 |
4
|
pwex |
|- ~P ( A u. B ) e. _V |
| 6 |
5
|
pwex |
|- ~P ~P ( A u. B ) e. _V |
| 7 |
6
|
rankss |
|- ( ( A X. B ) C_ ~P ~P ( A u. B ) -> ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) ) ) |
| 8 |
3 7
|
ax-mp |
|- ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) ) |
| 9 |
5
|
rankpw |
|- ( rank ` ~P ~P ( A u. B ) ) = suc ( rank ` ~P ( A u. B ) ) |
| 10 |
4
|
rankpw |
|- ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) ) |
| 11 |
|
suceq |
|- ( ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) ) -> suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) ) |
| 12 |
10 11
|
ax-mp |
|- suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) |
| 13 |
9 12
|
eqtri |
|- ( rank ` ~P ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) |
| 14 |
8 13
|
sseqtri |
|- ( rank ` ( A X. B ) ) C_ suc suc ( rank ` ( A u. B ) ) |