Metamath Proof Explorer


Theorem readdid1

Description: Real number version of addid1 , without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion readdid1 ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 resubid ( 𝐴 ∈ ℝ → ( 𝐴 𝐴 ) = 0 )
2 id ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ )
3 elre0re ( 𝐴 ∈ ℝ → 0 ∈ ℝ )
4 2 2 3 resubaddd ( 𝐴 ∈ ℝ → ( ( 𝐴 𝐴 ) = 0 ↔ ( 𝐴 + 0 ) = 𝐴 ) )
5 1 4 mpbid ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 )