Metamath Proof Explorer
Description: Real number version of subid1 , without ax-mulcom . (Contributed by SN, 23-Jan-2024)
|
|
Ref |
Expression |
|
Assertion |
resubid1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 0 ) = 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
readdid2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 + 𝐴 ) = 𝐴 ) |
2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
3 |
|
elre0re |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
4 |
2 3 2
|
resubaddd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 −ℝ 0 ) = 𝐴 ↔ ( 0 + 𝐴 ) = 𝐴 ) ) |
5 |
1 4
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 0 ) = 𝐴 ) |