Description: Real number version of subid1 without ax-mulcom . (Contributed by SN, 23-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubid1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 0 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readdlid | ⊢ ( 𝐴 ∈ ℝ → ( 0 + 𝐴 ) = 𝐴 ) | |
| 2 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 3 | elre0re | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 4 | 2 3 2 | resubaddd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 −ℝ 0 ) = 𝐴 ↔ ( 0 + 𝐴 ) = 𝐴 ) ) |
| 5 | 1 4 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 0 ) = 𝐴 ) |