Description: Real number version of subid1 , without ax-mulcom . (Contributed by SN, 23-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | resubid1 | |- ( A e. RR -> ( A -R 0 ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdid2 | |- ( A e. RR -> ( 0 + A ) = A ) |
|
2 | id | |- ( A e. RR -> A e. RR ) |
|
3 | elre0re | |- ( A e. RR -> 0 e. RR ) |
|
4 | 2 3 2 | resubaddd | |- ( A e. RR -> ( ( A -R 0 ) = A <-> ( 0 + A ) = A ) ) |
5 | 1 4 | mpbird | |- ( A e. RR -> ( A -R 0 ) = A ) |