| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
| 2 |
|
rernegcl |
|- ( ( 0 -R A ) e. RR -> ( 0 -R ( 0 -R A ) ) e. RR ) |
| 3 |
1 2
|
syl |
|- ( A e. RR -> ( 0 -R ( 0 -R A ) ) e. RR ) |
| 4 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 5 |
|
renegid |
|- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
| 6 |
|
elre0re |
|- ( A e. RR -> 0 e. RR ) |
| 7 |
5 6
|
eqeltrd |
|- ( A e. RR -> ( A + ( 0 -R A ) ) e. RR ) |
| 8 |
|
readdrid |
|- ( A e. RR -> ( A + 0 ) = A ) |
| 9 |
|
repncan3 |
|- ( ( ( 0 -R A ) e. RR /\ 0 e. RR ) -> ( ( 0 -R A ) + ( 0 -R ( 0 -R A ) ) ) = 0 ) |
| 10 |
1 6 9
|
syl2anc |
|- ( A e. RR -> ( ( 0 -R A ) + ( 0 -R ( 0 -R A ) ) ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( A e. RR -> ( A + ( ( 0 -R A ) + ( 0 -R ( 0 -R A ) ) ) ) = ( A + 0 ) ) |
| 12 |
|
readdlid |
|- ( A e. RR -> ( 0 + A ) = A ) |
| 13 |
8 11 12
|
3eqtr4d |
|- ( A e. RR -> ( A + ( ( 0 -R A ) + ( 0 -R ( 0 -R A ) ) ) ) = ( 0 + A ) ) |
| 14 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 15 |
1
|
recnd |
|- ( A e. RR -> ( 0 -R A ) e. CC ) |
| 16 |
3
|
recnd |
|- ( A e. RR -> ( 0 -R ( 0 -R A ) ) e. CC ) |
| 17 |
14 15 16
|
addassd |
|- ( A e. RR -> ( ( A + ( 0 -R A ) ) + ( 0 -R ( 0 -R A ) ) ) = ( A + ( ( 0 -R A ) + ( 0 -R ( 0 -R A ) ) ) ) ) |
| 18 |
5
|
oveq1d |
|- ( A e. RR -> ( ( A + ( 0 -R A ) ) + A ) = ( 0 + A ) ) |
| 19 |
13 17 18
|
3eqtr4d |
|- ( A e. RR -> ( ( A + ( 0 -R A ) ) + ( 0 -R ( 0 -R A ) ) ) = ( ( A + ( 0 -R A ) ) + A ) ) |
| 20 |
|
readdcan |
|- ( ( ( 0 -R ( 0 -R A ) ) e. RR /\ A e. RR /\ ( A + ( 0 -R A ) ) e. RR ) -> ( ( ( A + ( 0 -R A ) ) + ( 0 -R ( 0 -R A ) ) ) = ( ( A + ( 0 -R A ) ) + A ) <-> ( 0 -R ( 0 -R A ) ) = A ) ) |
| 21 |
20
|
biimpa |
|- ( ( ( ( 0 -R ( 0 -R A ) ) e. RR /\ A e. RR /\ ( A + ( 0 -R A ) ) e. RR ) /\ ( ( A + ( 0 -R A ) ) + ( 0 -R ( 0 -R A ) ) ) = ( ( A + ( 0 -R A ) ) + A ) ) -> ( 0 -R ( 0 -R A ) ) = A ) |
| 22 |
3 4 7 19 21
|
syl31anc |
|- ( A e. RR -> ( 0 -R ( 0 -R A ) ) = A ) |