Description: Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | renegid | |- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( 0 -R A ) = ( 0 -R A ) |
|
2 | rernegcl | |- ( A e. RR -> ( 0 -R A ) e. RR ) |
|
3 | renegadd | |- ( ( A e. RR /\ ( 0 -R A ) e. RR ) -> ( ( 0 -R A ) = ( 0 -R A ) <-> ( A + ( 0 -R A ) ) = 0 ) ) |
|
4 | 2 3 | mpdan | |- ( A e. RR -> ( ( 0 -R A ) = ( 0 -R A ) <-> ( A + ( 0 -R A ) ) = 0 ) ) |
5 | 1 4 | mpbii | |- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |