Description: Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | renegid | |- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 0 -R A ) = ( 0 -R A ) |
|
| 2 | rernegcl | |- ( A e. RR -> ( 0 -R A ) e. RR ) |
|
| 3 | renegadd | |- ( ( A e. RR /\ ( 0 -R A ) e. RR ) -> ( ( 0 -R A ) = ( 0 -R A ) <-> ( A + ( 0 -R A ) ) = 0 ) ) |
|
| 4 | 2 3 | mpdan | |- ( A e. RR -> ( ( 0 -R A ) = ( 0 -R A ) <-> ( A + ( 0 -R A ) ) = 0 ) ) |
| 5 | 1 4 | mpbii | |- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |