Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rernegcl | |- ( A e. RR -> ( 0 -R A ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re | |- ( A e. RR -> 0 e. RR ) |
|
2 | resubval | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) ) |
|
3 | 1 2 | mpancom | |- ( A e. RR -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) ) |
4 | renegeu | |- ( A e. RR -> E! x e. RR ( A + x ) = 0 ) |
|
5 | riotacl | |- ( E! x e. RR ( A + x ) = 0 -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR ) |
|
6 | 4 5 | syl | |- ( A e. RR -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR ) |
7 | 3 6 | eqeltrd | |- ( A e. RR -> ( 0 -R A ) e. RR ) |