Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rernegcl | |- ( A e. RR -> ( 0 -R A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re | |- ( A e. RR -> 0 e. RR ) |
|
| 2 | resubval | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) ) |
|
| 3 | 1 2 | mpancom | |- ( A e. RR -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) ) |
| 4 | renegeu | |- ( A e. RR -> E! x e. RR ( A + x ) = 0 ) |
|
| 5 | riotacl | |- ( E! x e. RR ( A + x ) = 0 -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR ) |
| 7 | 3 6 | eqeltrd | |- ( A e. RR -> ( 0 -R A ) e. RR ) |