Metamath Proof Explorer


Theorem rernegcl

Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion rernegcl
|- ( A e. RR -> ( 0 -R A ) e. RR )

Proof

Step Hyp Ref Expression
1 elre0re
 |-  ( A e. RR -> 0 e. RR )
2 resubval
 |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) )
3 1 2 mpancom
 |-  ( A e. RR -> ( 0 -R A ) = ( iota_ x e. RR ( A + x ) = 0 ) )
4 renegeu
 |-  ( A e. RR -> E! x e. RR ( A + x ) = 0 )
5 riotacl
 |-  ( E! x e. RR ( A + x ) = 0 -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR )
6 4 5 syl
 |-  ( A e. RR -> ( iota_ x e. RR ( A + x ) = 0 ) e. RR )
7 3 6 eqeltrd
 |-  ( A e. RR -> ( 0 -R A ) e. RR )