Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
rernegcl
Next ⟩
renegadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
rernegcl
Description:
Closure law for negative reals.
(Contributed by
Steven Nguyen
, 7-Jan-2023)
Ref
Expression
Assertion
rernegcl
⊢
A
∈
ℝ
→
0
-
ℝ
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
elre0re
⊢
A
∈
ℝ
→
0
∈
ℝ
2
resubval
⊢
0
∈
ℝ
∧
A
∈
ℝ
→
0
-
ℝ
A
=
ι
x
∈
ℝ
|
A
+
x
=
0
3
1
2
mpancom
⊢
A
∈
ℝ
→
0
-
ℝ
A
=
ι
x
∈
ℝ
|
A
+
x
=
0
4
renegeu
⊢
A
∈
ℝ
→
∃!
x
∈
ℝ
A
+
x
=
0
5
riotacl
⊢
∃!
x
∈
ℝ
A
+
x
=
0
→
ι
x
∈
ℝ
|
A
+
x
=
0
∈
ℝ
6
4
5
syl
⊢
A
∈
ℝ
→
ι
x
∈
ℝ
|
A
+
x
=
0
∈
ℝ
7
3
6
eqeltrd
⊢
A
∈
ℝ
→
0
-
ℝ
A
∈
ℝ