Metamath Proof Explorer


Theorem rernegcl

Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion rernegcl ( 𝐴 ∈ ℝ → ( 0 − 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 elre0re ( 𝐴 ∈ ℝ → 0 ∈ ℝ )
2 resubval ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 − 𝐴 ) = ( 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) )
3 1 2 mpancom ( 𝐴 ∈ ℝ → ( 0 − 𝐴 ) = ( 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) )
4 renegeu ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )
5 riotacl ( ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 → ( 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ∈ ℝ )
6 4 5 syl ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ∈ ℝ )
7 3 6 eqeltrd ( 𝐴 ∈ ℝ → ( 0 − 𝐴 ) ∈ ℝ )