Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rernegcl | ⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
2 | resubval | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 −ℝ 𝐴 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ) | |
3 | 1 2 | mpancom | ⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ) |
4 | renegeu | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) | |
5 | riotacl | ⊢ ( ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 → ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ∈ ℝ ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ∈ ℝ ) |
7 | 3 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |