Step |
Hyp |
Ref |
Expression |
1 |
|
elre0re |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
2 |
|
resubval |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 −ℝ 𝐴 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ) |
3 |
1 2
|
mpancom |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 −ℝ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
6 |
|
renegeu |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝐵 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |
9 |
8
|
riota2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∃! 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
10 |
6 9
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( ℩ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
12 |
5 11
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 −ℝ 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |