Metamath Proof Explorer


Theorem renegadd

Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion renegadd AB0-A=BA+B=0

Proof

Step Hyp Ref Expression
1 elre0re A0
2 resubval 0A0-A=ιx|A+x=0
3 1 2 mpancom A0-A=ιx|A+x=0
4 3 eqeq1d A0-A=Bιx|A+x=0=B
5 4 adantr AB0-A=Bιx|A+x=0=B
6 renegeu A∃!xA+x=0
7 oveq2 x=BA+x=A+B
8 7 eqeq1d x=BA+x=0A+B=0
9 8 riota2 B∃!xA+x=0A+B=0ιx|A+x=0=B
10 6 9 sylan2 BAA+B=0ιx|A+x=0=B
11 10 ancoms ABA+B=0ιx|A+x=0=B
12 5 11 bitr4d AB0-A=BA+B=0