Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
renegid
Next ⟩
reneg0addid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
renegid
Description:
Addition of a real number and its negative.
(Contributed by
Steven Nguyen
, 7-Jan-2023)
Ref
Expression
Assertion
renegid
⊢
A
∈
ℝ
→
A
+
0
-
ℝ
A
=
0
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
0
-
ℝ
A
=
0
-
ℝ
A
2
rernegcl
⊢
A
∈
ℝ
→
0
-
ℝ
A
∈
ℝ
3
renegadd
⊢
A
∈
ℝ
∧
0
-
ℝ
A
∈
ℝ
→
0
-
ℝ
A
=
0
-
ℝ
A
↔
A
+
0
-
ℝ
A
=
0
4
2
3
mpdan
⊢
A
∈
ℝ
→
0
-
ℝ
A
=
0
-
ℝ
A
↔
A
+
0
-
ℝ
A
=
0
5
1
4
mpbii
⊢
A
∈
ℝ
→
A
+
0
-
ℝ
A
=
0