Description: Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | renegid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 0 −ℝ 𝐴 ) = ( 0 −ℝ 𝐴 ) | |
| 2 | rernegcl | ⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) | |
| 3 | renegadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 −ℝ 𝐴 ) ∈ ℝ ) → ( ( 0 −ℝ 𝐴 ) = ( 0 −ℝ 𝐴 ) ↔ ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) ) | |
| 4 | 2 3 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) = ( 0 −ℝ 𝐴 ) ↔ ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) ) |
| 5 | 1 4 | mpbii | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) |