Metamath Proof Explorer


Theorem renegid

Description: Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion renegid ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 − 𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 eqid ( 0 − 𝐴 ) = ( 0 − 𝐴 )
2 rernegcl ( 𝐴 ∈ ℝ → ( 0 − 𝐴 ) ∈ ℝ )
3 renegadd ( ( 𝐴 ∈ ℝ ∧ ( 0 − 𝐴 ) ∈ ℝ ) → ( ( 0 − 𝐴 ) = ( 0 − 𝐴 ) ↔ ( 𝐴 + ( 0 − 𝐴 ) ) = 0 ) )
4 2 3 mpdan ( 𝐴 ∈ ℝ → ( ( 0 − 𝐴 ) = ( 0 − 𝐴 ) ↔ ( 𝐴 + ( 0 − 𝐴 ) ) = 0 ) )
5 1 4 mpbii ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 − 𝐴 ) ) = 0 )