Description: Addition and subtraction of equals. Based on pncan3 . (Contributed by Steven Nguyen, 8-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | repncan3 | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( B -R A ) ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rersubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B -R A ) e. RR ) |
|
2 | eqid | |- ( B -R A ) = ( B -R A ) |
|
3 | resubadd | |- ( ( B e. RR /\ A e. RR /\ ( B -R A ) e. RR ) -> ( ( B -R A ) = ( B -R A ) <-> ( A + ( B -R A ) ) = B ) ) |
|
4 | 2 3 | mpbii | |- ( ( B e. RR /\ A e. RR /\ ( B -R A ) e. RR ) -> ( A + ( B -R A ) ) = B ) |
5 | 1 4 | mpd3an3 | |- ( ( B e. RR /\ A e. RR ) -> ( A + ( B -R A ) ) = B ) |
6 | 5 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( B -R A ) ) = B ) |