Description: Closure for real subtraction. Based on subcl . (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rersubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubval | |- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) = ( iota_ x e. RR ( B + x ) = A ) ) |
|
| 2 | resubeu | |- ( ( B e. RR /\ A e. RR ) -> E! x e. RR ( B + x ) = A ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> E! x e. RR ( B + x ) = A ) |
| 4 | riotacl | |- ( E! x e. RR ( B + x ) = A -> ( iota_ x e. RR ( B + x ) = A ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( iota_ x e. RR ( B + x ) = A ) e. RR ) |
| 6 | 1 5 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR ) |