Metamath Proof Explorer


Theorem rersubcl

Description: Closure for real subtraction. Based on subcl . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion rersubcl
|- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR )

Proof

Step Hyp Ref Expression
1 resubval
 |-  ( ( A e. RR /\ B e. RR ) -> ( A -R B ) = ( iota_ x e. RR ( B + x ) = A ) )
2 resubeu
 |-  ( ( B e. RR /\ A e. RR ) -> E! x e. RR ( B + x ) = A )
3 2 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> E! x e. RR ( B + x ) = A )
4 riotacl
 |-  ( E! x e. RR ( B + x ) = A -> ( iota_ x e. RR ( B + x ) = A ) e. RR )
5 3 4 syl
 |-  ( ( A e. RR /\ B e. RR ) -> ( iota_ x e. RR ( B + x ) = A ) e. RR )
6 1 5 eqeltrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR )