Metamath Proof Explorer


Theorem rersubcl

Description: Closure for real subtraction. Based on subcl . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion rersubcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 resubval ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐵 ) = ( 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) )
2 resubeu ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 )
3 2 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 )
4 riotacl ( ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 → ( 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℝ )
5 3 4 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℝ )
6 1 5 eqeltrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐵 ) ∈ ℝ )