Description: Closure for real subtraction. Based on subcl . (Contributed by Steven Nguyen, 7-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rersubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ) | |
2 | resubeu | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
4 | riotacl | ⊢ ( ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 → ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℝ ) | |
5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) ∈ ℝ ) |
6 | 1 5 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) ∈ ℝ ) |