Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
2 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
3 |
2
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
4 |
|
repncan3 |
|- ( ( C e. RR /\ ( A + B ) e. RR ) -> ( C + ( ( A + B ) -R C ) ) = ( A + B ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( ( A + B ) -R C ) ) = ( A + B ) ) |
6 |
|
repncan3 |
|- ( ( C e. RR /\ A e. RR ) -> ( C + ( A -R C ) ) = A ) |
7 |
6
|
ancoms |
|- ( ( A e. RR /\ C e. RR ) -> ( C + ( A -R C ) ) = A ) |
8 |
7
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( A -R C ) ) = A ) |
9 |
8
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + ( A -R C ) ) + B ) = ( A + B ) ) |
10 |
1
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
11 |
|
rersubcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A -R C ) e. RR ) |
12 |
11
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A -R C ) e. RR ) |
13 |
12
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A -R C ) e. CC ) |
14 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
15 |
14
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
16 |
10 13 15
|
addassd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + ( A -R C ) ) + B ) = ( C + ( ( A -R C ) + B ) ) ) |
17 |
5 9 16
|
3eqtr2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( ( A + B ) -R C ) ) = ( C + ( ( A -R C ) + B ) ) ) |
18 |
|
rersubcl |
|- ( ( ( A + B ) e. RR /\ C e. RR ) -> ( ( A + B ) -R C ) e. RR ) |
19 |
3 1 18
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) -R C ) e. RR ) |
20 |
12 14
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R C ) + B ) e. RR ) |
21 |
|
readdcan |
|- ( ( ( ( A + B ) -R C ) e. RR /\ ( ( A -R C ) + B ) e. RR /\ C e. RR ) -> ( ( C + ( ( A + B ) -R C ) ) = ( C + ( ( A -R C ) + B ) ) <-> ( ( A + B ) -R C ) = ( ( A -R C ) + B ) ) ) |
22 |
19 20 1 21
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + ( ( A + B ) -R C ) ) = ( C + ( ( A -R C ) + B ) ) <-> ( ( A + B ) -R C ) = ( ( A -R C ) + B ) ) ) |
23 |
17 22
|
mpbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) -R C ) = ( ( A -R C ) + B ) ) |