Description: Addition and subtraction of equals. Based on pncan3 . (Contributed by Steven Nguyen, 8-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repncan3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 −ℝ 𝐴 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rersubcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 −ℝ 𝐴 ) ∈ ℝ ) | |
| 2 | eqid | ⊢ ( 𝐵 −ℝ 𝐴 ) = ( 𝐵 −ℝ 𝐴 ) | |
| 3 | resubadd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 −ℝ 𝐴 ) ∈ ℝ ) → ( ( 𝐵 −ℝ 𝐴 ) = ( 𝐵 −ℝ 𝐴 ) ↔ ( 𝐴 + ( 𝐵 −ℝ 𝐴 ) ) = 𝐵 ) ) | |
| 4 | 2 3 | mpbii | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 −ℝ 𝐴 ) ∈ ℝ ) → ( 𝐴 + ( 𝐵 −ℝ 𝐴 ) ) = 𝐵 ) |
| 5 | 1 4 | mpd3an3 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + ( 𝐵 −ℝ 𝐴 ) ) = 𝐵 ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 −ℝ 𝐴 ) ) = 𝐵 ) |