Metamath Proof Explorer


Theorem repncan3

Description: Addition and subtraction of equals. Based on pncan3 . (Contributed by Steven Nguyen, 8-Jan-2023)

Ref Expression
Assertion repncan3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 rersubcl ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 𝐴 ) ∈ ℝ )
2 eqid ( 𝐵 𝐴 ) = ( 𝐵 𝐴 )
3 resubadd ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 𝐴 ) ∈ ℝ ) → ( ( 𝐵 𝐴 ) = ( 𝐵 𝐴 ) ↔ ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 ) )
4 2 3 mpbii ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 𝐴 ) ∈ ℝ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )
5 1 4 mpd3an3 ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )
6 5 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )