Metamath Proof Explorer


Theorem resubid1

Description: Real number version of subid1 , without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion resubid1 A A - 0 = A

Proof

Step Hyp Ref Expression
1 readdid2 A 0 + A = A
2 id A A
3 elre0re A 0
4 2 3 2 resubaddd A A - 0 = A 0 + A = A
5 1 4 mpbird A A - 0 = A