Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
resubid1
Next ⟩
renegneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
resubid1
Description:
Real number version of
subid1
, without
ax-mulcom
.
(Contributed by
SN
, 23-Jan-2024)
Ref
Expression
Assertion
resubid1
⊢
A
∈
ℝ
→
A
-
ℝ
0
=
A
Proof
Step
Hyp
Ref
Expression
1
readdid2
⊢
A
∈
ℝ
→
0
+
A
=
A
2
id
⊢
A
∈
ℝ
→
A
∈
ℝ
3
elre0re
⊢
A
∈
ℝ
→
0
∈
ℝ
4
2
3
2
resubaddd
⊢
A
∈
ℝ
→
A
-
ℝ
0
=
A
↔
0
+
A
=
A
5
1
4
mpbird
⊢
A
∈
ℝ
→
A
-
ℝ
0
=
A