| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 | 1 | recld2 | ⊢ ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) | 
						
							| 3 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 4 | 3 | cncmet | ⊢ ( abs  ∘   −  )  ∈  ( CMet ‘ ℂ ) | 
						
							| 5 | 1 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld )  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 6 | 5 | cmetss | ⊢ ( ( abs  ∘   −  )  ∈  ( CMet ‘ ℂ )  →  ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( CMet ‘ ℝ )  ↔  ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) | 
						
							| 7 | 4 6 | ax-mp | ⊢ ( ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( CMet ‘ ℝ )  ↔  ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 8 | 2 7 | mpbir | ⊢ ( ( abs  ∘   −  )  ↾  ( ℝ  ×  ℝ ) )  ∈  ( CMet ‘ ℝ ) |