Metamath Proof Explorer


Theorem recmet

Description: The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion recmet abs2CMet

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 1 recld2 ClsdTopOpenfld
3 eqid abs=abs
4 3 cncmet absCMet
5 1 cnfldtopn TopOpenfld=MetOpenabs
6 5 cmetss absCMetabs2CMetClsdTopOpenfld
7 4 6 ax-mp abs2CMetClsdTopOpenfld
8 2 7 mpbir abs2CMet