| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncmet.1 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
cnfldtopn |
|
| 4 |
1
|
fveq2i |
|
| 5 |
3 4
|
eqtr4i |
|
| 6 |
|
cnmet |
|
| 7 |
1 6
|
eqeltri |
|
| 8 |
7
|
a1i |
|
| 9 |
|
1rp |
|
| 10 |
9
|
a1i |
|
| 11 |
2
|
cnfldtop |
|
| 12 |
|
metxmet |
|
| 13 |
7 12
|
ax-mp |
|
| 14 |
|
1xr |
|
| 15 |
|
blssm |
|
| 16 |
13 14 15
|
mp3an13 |
|
| 17 |
|
unicntop |
|
| 18 |
17
|
clscld |
|
| 19 |
11 16 18
|
sylancr |
|
| 20 |
|
abscl |
|
| 21 |
|
peano2re |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
df-rab |
|
| 24 |
23
|
eqcomi |
|
| 25 |
5 24
|
blcls |
|
| 26 |
13 14 25
|
mp3an13 |
|
| 27 |
|
abscl |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
20
|
adantr |
|
| 30 |
28 29
|
resubcld |
|
| 31 |
|
simpl |
|
| 32 |
|
id |
|
| 33 |
|
subcl |
|
| 34 |
31 32 33
|
syl2anr |
|
| 35 |
34
|
abscld |
|
| 36 |
|
1red |
|
| 37 |
|
simprl |
|
| 38 |
|
simpl |
|
| 39 |
37 38
|
abs2difd |
|
| 40 |
1
|
cnmetdval |
|
| 41 |
|
abssub |
|
| 42 |
40 41
|
eqtrd |
|
| 43 |
42
|
adantrr |
|
| 44 |
|
simprr |
|
| 45 |
43 44
|
eqbrtrrd |
|
| 46 |
30 35 36 39 45
|
letrd |
|
| 47 |
28 29 36
|
lesubadd2d |
|
| 48 |
46 47
|
mpbid |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
ss2abdv |
|
| 51 |
26 50
|
sstrd |
|
| 52 |
|
ssabral |
|
| 53 |
51 52
|
sylib |
|
| 54 |
|
brralrspcev |
|
| 55 |
22 53 54
|
syl2anc |
|
| 56 |
17
|
clsss3 |
|
| 57 |
11 16 56
|
sylancr |
|
| 58 |
|
eqid |
|
| 59 |
2 58
|
cnheibor |
|
| 60 |
57 59
|
syl |
|
| 61 |
19 55 60
|
mpbir2and |
|
| 62 |
61
|
adantl |
|
| 63 |
5 8 10 62
|
relcmpcmet |
|
| 64 |
63
|
mptru |
|