Description: The domain of Ran is a relation. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmran | ⊢ Rel dom Ran |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ran | ⊢ Ran = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( oppFunc ‘ ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ) ( ( oppCat ‘ ( 𝑑 FuncCat 𝑒 ) ) UP ( oppCat ‘ ( 𝑐 FuncCat 𝑒 ) ) ) 𝑥 ) ) ) | |
| 2 | 1 | reldmmpo | ⊢ Rel dom Ran |