Metamath Proof Explorer


Theorem reordt

Description: The real numbers are an open set in the topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion reordt ℝ ∈ ( ordTop ‘ ≤ )

Proof

Step Hyp Ref Expression
1 ioomax ( -∞ (,) +∞ ) = ℝ
2 iooordt ( -∞ (,) +∞ ) ∈ ( ordTop ‘ ≤ )
3 1 2 eqeltrri ℝ ∈ ( ordTop ‘ ≤ )