| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
⊢ ( 𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) |
| 2 |
|
df-res |
⊢ ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) ) |
| 4 |
3
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 5 |
|
xpiundir |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) |
| 6 |
5
|
ineq2i |
⊢ ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) = ( 𝐶 ∩ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) ) |
| 7 |
|
iunin2 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) = ( 𝐶 ∩ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) ) |
| 8 |
6 7
|
eqtr4i |
⊢ ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 9 |
4 8
|
eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) |
| 10 |
1 9
|
eqtr4i |
⊢ ( 𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) |