| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
|- ( C |` U_ x e. A B ) = ( C i^i ( U_ x e. A B X. _V ) ) |
| 2 |
|
df-res |
|- ( C |` B ) = ( C i^i ( B X. _V ) ) |
| 3 |
2
|
a1i |
|- ( x e. A -> ( C |` B ) = ( C i^i ( B X. _V ) ) ) |
| 4 |
3
|
iuneq2i |
|- U_ x e. A ( C |` B ) = U_ x e. A ( C i^i ( B X. _V ) ) |
| 5 |
|
xpiundir |
|- ( U_ x e. A B X. _V ) = U_ x e. A ( B X. _V ) |
| 6 |
5
|
ineq2i |
|- ( C i^i ( U_ x e. A B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) |
| 7 |
|
iunin2 |
|- U_ x e. A ( C i^i ( B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) |
| 8 |
6 7
|
eqtr4i |
|- ( C i^i ( U_ x e. A B X. _V ) ) = U_ x e. A ( C i^i ( B X. _V ) ) |
| 9 |
4 8
|
eqtr4i |
|- U_ x e. A ( C |` B ) = ( C i^i ( U_ x e. A B X. _V ) ) |
| 10 |
1 9
|
eqtr4i |
|- ( C |` U_ x e. A B ) = U_ x e. A ( C |` B ) |