Step |
Hyp |
Ref |
Expression |
1 |
|
ressmpl.s |
⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
ressmpl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
3 |
|
ressmpl.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
4 |
|
ressmpl.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressmpl.1 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
ressmpl.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
ressmpl.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
8 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
10 |
3 8 4 9
|
mplbasss |
⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
11 |
10
|
sseli |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
12 |
10
|
sseli |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
13 |
11 12
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
14 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
15 |
|
eqid |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
16 |
14 2 8 9 15 6
|
resspsrmul |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) → ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
17 |
13 16
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
18 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
19 |
3 8 4
|
mplval2 |
⊢ 𝑈 = ( ( 𝐼 mPwSer 𝐻 ) ↾s 𝐵 ) |
20 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) |
21 |
19 20
|
ressmulr |
⊢ ( 𝐵 ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ 𝑈 ) ) |
22 |
18 21
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ 𝑈 ) |
23 |
22
|
oveqi |
⊢ ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) |
24 |
|
fvex |
⊢ ( Base ‘ 𝑆 ) ∈ V |
25 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
26 |
1 14 25
|
mplval2 |
⊢ 𝑆 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑆 ) ) |
27 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
28 |
26 27
|
ressmulr |
⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ 𝑆 ) ) |
29 |
24 28
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ 𝑆 ) |
30 |
|
fvex |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V |
31 |
15 27
|
ressmulr |
⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) ) |
32 |
30 31
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
34 |
7 33
|
ressmulr |
⊢ ( 𝐵 ∈ V → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) ) |
35 |
18 34
|
ax-mp |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) |
36 |
29 32 35
|
3eqtr3i |
⊢ ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) = ( .r ‘ 𝑃 ) |
37 |
36
|
oveqi |
⊢ ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) |
38 |
17 23 37
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |