| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmpl.s |
⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
ressmpl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressmpl.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
| 4 |
|
ressmpl.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressmpl.1 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
ressmpl.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
ressmpl.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 8 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 10 |
3 8 4 9
|
mplbasss |
⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 11 |
10
|
sseli |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 12 |
10
|
sseli |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 13 |
11 12
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 15 |
|
eqid |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 16 |
14 2 8 9 15 6
|
resspsrmul |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) → ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 17 |
13 16
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 18 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 19 |
3 8 4
|
mplval2 |
⊢ 𝑈 = ( ( 𝐼 mPwSer 𝐻 ) ↾s 𝐵 ) |
| 20 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 21 |
19 20
|
ressmulr |
⊢ ( 𝐵 ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ 𝑈 ) ) |
| 22 |
18 21
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( .r ‘ 𝑈 ) |
| 23 |
22
|
oveqi |
⊢ ( 𝑋 ( .r ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) |
| 24 |
|
fvex |
⊢ ( Base ‘ 𝑆 ) ∈ V |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 26 |
1 14 25
|
mplval2 |
⊢ 𝑆 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑆 ) ) |
| 27 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 28 |
26 27
|
ressmulr |
⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ 𝑆 ) ) |
| 29 |
24 28
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ 𝑆 ) |
| 30 |
|
fvex |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V |
| 31 |
15 27
|
ressmulr |
⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) ) |
| 32 |
30 31
|
ax-mp |
⊢ ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
| 33 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 34 |
7 33
|
ressmulr |
⊢ ( 𝐵 ∈ V → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) ) |
| 35 |
18 34
|
ax-mp |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) |
| 36 |
29 32 35
|
3eqtr3i |
⊢ ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) = ( .r ‘ 𝑃 ) |
| 37 |
36
|
oveqi |
⊢ ( 𝑋 ( .r ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) |
| 38 |
17 23 37
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |