| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressplusf.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ressplusf.2 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
| 3 |
|
ressplusf.3 |
⊢ ⨣ = ( +g ‘ 𝐺 ) |
| 4 |
|
ressplusf.4 |
⊢ ⨣ Fn ( 𝐵 × 𝐵 ) |
| 5 |
|
ressplusf.5 |
⊢ 𝐴 ⊆ 𝐵 |
| 6 |
|
resmpo |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ⨣ 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑥 ⨣ 𝑦 ) ) ) |
| 7 |
5 5 6
|
mp2an |
⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ⨣ 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑥 ⨣ 𝑦 ) ) |
| 8 |
|
fnov |
⊢ ( ⨣ Fn ( 𝐵 × 𝐵 ) ↔ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ⨣ 𝑦 ) ) ) |
| 9 |
4 8
|
mpbi |
⊢ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ⨣ 𝑦 ) ) |
| 10 |
9
|
reseq1i |
⊢ ( ⨣ ↾ ( 𝐴 × 𝐴 ) ) = ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ⨣ 𝑦 ) ) ↾ ( 𝐴 × 𝐴 ) ) |
| 11 |
2 1
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 12 |
5 11
|
ax-mp |
⊢ 𝐴 = ( Base ‘ 𝐻 ) |
| 13 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 14 |
13 5
|
ssexi |
⊢ 𝐴 ∈ V |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 16 |
2 15
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 17 |
14 16
|
ax-mp |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) |
| 18 |
3 17
|
eqtri |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
| 19 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐻 ) = ( +𝑓 ‘ 𝐻 ) |
| 20 |
12 18 19
|
plusffval |
⊢ ( +𝑓 ‘ 𝐻 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑥 ⨣ 𝑦 ) ) |
| 21 |
7 10 20
|
3eqtr4ri |
⊢ ( +𝑓 ‘ 𝐻 ) = ( ⨣ ↾ ( 𝐴 × 𝐴 ) ) |