Metamath Proof Explorer


Theorem ressplusf

Description: The group operation function +f of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017)

Ref Expression
Hypotheses ressplusf.1
|- B = ( Base ` G )
ressplusf.2
|- H = ( G |`s A )
ressplusf.3
|- .+^ = ( +g ` G )
ressplusf.4
|- .+^ Fn ( B X. B )
ressplusf.5
|- A C_ B
Assertion ressplusf
|- ( +f ` H ) = ( .+^ |` ( A X. A ) )

Proof

Step Hyp Ref Expression
1 ressplusf.1
 |-  B = ( Base ` G )
2 ressplusf.2
 |-  H = ( G |`s A )
3 ressplusf.3
 |-  .+^ = ( +g ` G )
4 ressplusf.4
 |-  .+^ Fn ( B X. B )
5 ressplusf.5
 |-  A C_ B
6 resmpo
 |-  ( ( A C_ B /\ A C_ B ) -> ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) ) = ( x e. A , y e. A |-> ( x .+^ y ) ) )
7 5 5 6 mp2an
 |-  ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) ) = ( x e. A , y e. A |-> ( x .+^ y ) )
8 fnov
 |-  ( .+^ Fn ( B X. B ) <-> .+^ = ( x e. B , y e. B |-> ( x .+^ y ) ) )
9 4 8 mpbi
 |-  .+^ = ( x e. B , y e. B |-> ( x .+^ y ) )
10 9 reseq1i
 |-  ( .+^ |` ( A X. A ) ) = ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) )
11 2 1 ressbas2
 |-  ( A C_ B -> A = ( Base ` H ) )
12 5 11 ax-mp
 |-  A = ( Base ` H )
13 1 fvexi
 |-  B e. _V
14 13 5 ssexi
 |-  A e. _V
15 eqid
 |-  ( +g ` G ) = ( +g ` G )
16 2 15 ressplusg
 |-  ( A e. _V -> ( +g ` G ) = ( +g ` H ) )
17 14 16 ax-mp
 |-  ( +g ` G ) = ( +g ` H )
18 3 17 eqtri
 |-  .+^ = ( +g ` H )
19 eqid
 |-  ( +f ` H ) = ( +f ` H )
20 12 18 19 plusffval
 |-  ( +f ` H ) = ( x e. A , y e. A |-> ( x .+^ y ) )
21 7 10 20 3eqtr4ri
 |-  ( +f ` H ) = ( .+^ |` ( A X. A ) )