| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressplusf.1 |
|- B = ( Base ` G ) |
| 2 |
|
ressplusf.2 |
|- H = ( G |`s A ) |
| 3 |
|
ressplusf.3 |
|- .+^ = ( +g ` G ) |
| 4 |
|
ressplusf.4 |
|- .+^ Fn ( B X. B ) |
| 5 |
|
ressplusf.5 |
|- A C_ B |
| 6 |
|
resmpo |
|- ( ( A C_ B /\ A C_ B ) -> ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) ) = ( x e. A , y e. A |-> ( x .+^ y ) ) ) |
| 7 |
5 5 6
|
mp2an |
|- ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) ) = ( x e. A , y e. A |-> ( x .+^ y ) ) |
| 8 |
|
fnov |
|- ( .+^ Fn ( B X. B ) <-> .+^ = ( x e. B , y e. B |-> ( x .+^ y ) ) ) |
| 9 |
4 8
|
mpbi |
|- .+^ = ( x e. B , y e. B |-> ( x .+^ y ) ) |
| 10 |
9
|
reseq1i |
|- ( .+^ |` ( A X. A ) ) = ( ( x e. B , y e. B |-> ( x .+^ y ) ) |` ( A X. A ) ) |
| 11 |
2 1
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` H ) ) |
| 12 |
5 11
|
ax-mp |
|- A = ( Base ` H ) |
| 13 |
1
|
fvexi |
|- B e. _V |
| 14 |
13 5
|
ssexi |
|- A e. _V |
| 15 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 16 |
2 15
|
ressplusg |
|- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
| 17 |
14 16
|
ax-mp |
|- ( +g ` G ) = ( +g ` H ) |
| 18 |
3 17
|
eqtri |
|- .+^ = ( +g ` H ) |
| 19 |
|
eqid |
|- ( +f ` H ) = ( +f ` H ) |
| 20 |
12 18 19
|
plusffval |
|- ( +f ` H ) = ( x e. A , y e. A |-> ( x .+^ y ) ) |
| 21 |
7 10 20
|
3eqtr4ri |
|- ( +f ` H ) = ( .+^ |` ( A X. A ) ) |