Metamath Proof Explorer


Theorem ressuppfi

Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019)

Ref Expression
Hypotheses ressuppfi.b ( 𝜑 → ( dom 𝐹𝐵 ) ∈ Fin )
ressuppfi.f ( 𝜑𝐹𝑊 )
ressuppfi.g ( 𝜑𝐺 = ( 𝐹𝐵 ) )
ressuppfi.s ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin )
ressuppfi.z ( 𝜑𝑍𝑉 )
Assertion ressuppfi ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 ressuppfi.b ( 𝜑 → ( dom 𝐹𝐵 ) ∈ Fin )
2 ressuppfi.f ( 𝜑𝐹𝑊 )
3 ressuppfi.g ( 𝜑𝐺 = ( 𝐹𝐵 ) )
4 ressuppfi.s ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin )
5 ressuppfi.z ( 𝜑𝑍𝑉 )
6 3 eqcomd ( 𝜑 → ( 𝐹𝐵 ) = 𝐺 )
7 6 oveq1d ( 𝜑 → ( ( 𝐹𝐵 ) supp 𝑍 ) = ( 𝐺 supp 𝑍 ) )
8 7 4 eqeltrd ( 𝜑 → ( ( 𝐹𝐵 ) supp 𝑍 ) ∈ Fin )
9 unfi ( ( ( ( 𝐹𝐵 ) supp 𝑍 ) ∈ Fin ∧ ( dom 𝐹𝐵 ) ∈ Fin ) → ( ( ( 𝐹𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹𝐵 ) ) ∈ Fin )
10 8 1 9 syl2anc ( 𝜑 → ( ( ( 𝐹𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹𝐵 ) ) ∈ Fin )
11 ressuppssdif ( ( 𝐹𝑊𝑍𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹𝐵 ) ) )
12 2 5 11 syl2anc ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹𝐵 ) ) )
13 10 12 ssfid ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )