| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  1  ∈  ℂ ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  𝑘  ∈  ℕ ) | 
						
							| 3 | 2 | nncnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  𝑘  ∈  ℂ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 5 | 1 4 | pncan3d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( 1  +  ( 𝑘  −  1 ) )  =  𝑘 ) | 
						
							| 6 | 5 | prodeq2dv | ⊢ ( 𝑁  ∈  ℕ0  →  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) ( 1  +  ( 𝑘  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) 𝑘 ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | risefacval2 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 1  RiseFac  𝑁 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) ( 1  +  ( 𝑘  −  1 ) ) ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  RiseFac  𝑁 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) ( 1  +  ( 𝑘  −  1 ) ) ) | 
						
							| 10 |  | fprodfac | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑁 ) 𝑘 ) | 
						
							| 11 | 6 9 10 | 3eqtr4d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  RiseFac  𝑁 )  =  ( ! ‘ 𝑁 ) ) |