| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. CC ) | 
						
							| 2 |  | elfznn |  |-  ( k e. ( 1 ... N ) -> k e. NN ) | 
						
							| 3 | 2 | nncnd |  |-  ( k e. ( 1 ... N ) -> k e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. CC ) | 
						
							| 5 | 1 4 | pncan3d |  |-  ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( 1 + ( k - 1 ) ) = k ) | 
						
							| 6 | 5 | prodeq2dv |  |-  ( N e. NN0 -> prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) k ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | risefacval2 |  |-  ( ( 1 e. CC /\ N e. NN0 ) -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) | 
						
							| 9 | 7 8 | mpan |  |-  ( N e. NN0 -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) | 
						
							| 10 |  | fprodfac |  |-  ( N e. NN0 -> ( ! ` N ) = prod_ k e. ( 1 ... N ) k ) | 
						
							| 11 | 6 9 10 | 3eqtr4d |  |-  ( N e. NN0 -> ( 1 RiseFac N ) = ( ! ` N ) ) |