| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2cn |  |-  ( A e. CC -> ( A + 1 ) e. CC ) | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 |  | fallfacval |  |-  ( ( ( A + 1 ) e. CC /\ N e. NN0 ) -> ( ( A + 1 ) FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) | 
						
							| 5 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 6 | 5 | oveq1i |  |-  ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 7 | 6 | prodeq1i |  |-  prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) | 
						
							| 8 | 7 | oveq2i |  |-  ( ( A - -u 1 ) x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) = ( ( A - -u 1 ) x. prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) | 
						
							| 9 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. NN0 ) | 
						
							| 11 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 12 | 10 11 | eleqtrdi |  |-  ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 13 |  | simpll |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) | 
						
							| 14 |  | elfzelz |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ZZ ) | 
						
							| 16 |  | peano2zm |  |-  ( k e. ZZ -> ( k - 1 ) e. ZZ ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k - 1 ) e. ZZ ) | 
						
							| 18 | 17 | zcnd |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k - 1 ) e. CC ) | 
						
							| 19 | 13 18 | subcld |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - ( k - 1 ) ) e. CC ) | 
						
							| 20 |  | oveq1 |  |-  ( k = 0 -> ( k - 1 ) = ( 0 - 1 ) ) | 
						
							| 21 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 22 | 20 21 | eqtr4di |  |-  ( k = 0 -> ( k - 1 ) = -u 1 ) | 
						
							| 23 | 22 | oveq2d |  |-  ( k = 0 -> ( A - ( k - 1 ) ) = ( A - -u 1 ) ) | 
						
							| 24 | 12 19 23 | fprod1p |  |-  ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = ( ( A - -u 1 ) x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) ) | 
						
							| 25 |  | fallfacval2 |  |-  ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( N - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) | 
						
							| 26 | 9 25 | sylan2 |  |-  ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( N - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) = ( ( A - -u 1 ) x. prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) ) | 
						
							| 28 | 8 24 27 | 3eqtr4a |  |-  ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 29 |  | elfznn0 |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) | 
						
							| 31 | 30 | nn0cnd |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) | 
						
							| 32 |  | 1cnd |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 33 | 13 31 32 | subsub3d |  |-  ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - ( k - 1 ) ) = ( ( A + 1 ) - k ) ) | 
						
							| 34 | 33 | prodeq2dv |  |-  ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) | 
						
							| 35 |  | simpl |  |-  ( ( A e. CC /\ N e. NN ) -> A e. CC ) | 
						
							| 36 |  | 1cnd |  |-  ( ( A e. CC /\ N e. NN ) -> 1 e. CC ) | 
						
							| 37 | 35 36 | subnegd |  |-  ( ( A e. CC /\ N e. NN ) -> ( A - -u 1 ) = ( A + 1 ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 39 | 28 34 38 | 3eqtr3d |  |-  ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 40 | 4 39 | eqtrd |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) FallFac N ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 41 |  | simpr |  |-  ( ( A e. CC /\ N e. NN ) -> N e. NN ) | 
						
							| 42 | 41 | nncnd |  |-  ( ( A e. CC /\ N e. NN ) -> N e. CC ) | 
						
							| 43 | 42 36 | npcand |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( A FallFac N ) ) | 
						
							| 45 |  | fallfacp1 |  |-  ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) | 
						
							| 46 | 9 45 | sylan2 |  |-  ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) | 
						
							| 47 | 44 46 | eqtr3d |  |-  ( ( A e. CC /\ N e. NN ) -> ( A FallFac N ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) | 
						
							| 48 | 40 47 | oveq12d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) FallFac N ) - ( A FallFac N ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) ) | 
						
							| 49 |  | fallfaccl |  |-  ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( N - 1 ) ) e. CC ) | 
						
							| 50 | 9 49 | sylan2 |  |-  ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( N - 1 ) ) e. CC ) | 
						
							| 51 | 10 | nn0cnd |  |-  ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. CC ) | 
						
							| 52 | 35 51 | subcld |  |-  ( ( A e. CC /\ N e. NN ) -> ( A - ( N - 1 ) ) e. CC ) | 
						
							| 53 | 50 52 | mulcomd |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) = ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) ) | 
						
							| 55 | 1 | adantr |  |-  ( ( A e. CC /\ N e. NN ) -> ( A + 1 ) e. CC ) | 
						
							| 56 | 55 52 50 | subdird |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) - ( A - ( N - 1 ) ) ) x. ( A FallFac ( N - 1 ) ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) ) | 
						
							| 57 | 35 36 51 | pnncand |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) - ( A - ( N - 1 ) ) ) = ( 1 + ( N - 1 ) ) ) | 
						
							| 58 | 36 42 | pncan3d |  |-  ( ( A e. CC /\ N e. NN ) -> ( 1 + ( N - 1 ) ) = N ) | 
						
							| 59 | 57 58 | eqtrd |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) - ( A - ( N - 1 ) ) ) = N ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) - ( A - ( N - 1 ) ) ) x. ( A FallFac ( N - 1 ) ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 61 | 54 56 60 | 3eqtr2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) | 
						
							| 62 | 48 61 | eqtrd |  |-  ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) FallFac N ) - ( A FallFac N ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) |