| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn |  |-  0 e. CC | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 |  | fallfacval |  |-  ( ( 0 e. CC /\ N e. NN0 ) -> ( 0 FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( N e. NN -> ( 0 FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) ) | 
						
							| 5 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 6 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 7 | 5 6 | eleqtrdi |  |-  ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 8 |  | elfzelz |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) | 
						
							| 9 | 8 | zcnd |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. CC ) | 
						
							| 10 |  | subcl |  |-  ( ( 0 e. CC /\ k e. CC ) -> ( 0 - k ) e. CC ) | 
						
							| 11 | 1 9 10 | sylancr |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> ( 0 - k ) e. CC ) | 
						
							| 12 | 11 | adantl |  |-  ( ( N e. NN /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( 0 - k ) e. CC ) | 
						
							| 13 |  | oveq2 |  |-  ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) | 
						
							| 14 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( k = 0 -> ( 0 - k ) = 0 ) | 
						
							| 16 | 7 12 15 | fprod1p |  |-  ( N e. NN -> prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) = ( 0 x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) ) ) | 
						
							| 17 |  | fzfid |  |-  ( N e. NN -> ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) | 
						
							| 18 |  | elfzelz |  |-  ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. ZZ ) | 
						
							| 19 | 18 | zcnd |  |-  ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. CC ) | 
						
							| 20 | 1 19 10 | sylancr |  |-  ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> ( 0 - k ) e. CC ) | 
						
							| 21 | 20 | adantl |  |-  ( ( N e. NN /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( 0 - k ) e. CC ) | 
						
							| 22 | 17 21 | fprodcl |  |-  ( N e. NN -> prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) e. CC ) | 
						
							| 23 | 22 | mul02d |  |-  ( N e. NN -> ( 0 x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) ) = 0 ) | 
						
							| 24 | 4 16 23 | 3eqtrd |  |-  ( N e. NN -> ( 0 FallFac N ) = 0 ) |