| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn |  |-  0 e. CC | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 |  | risefallfac |  |-  ( ( 0 e. CC /\ N e. NN0 ) -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( N e. NN -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) | 
						
							| 5 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 6 | 5 | oveq1i |  |-  ( -u 0 FallFac N ) = ( 0 FallFac N ) | 
						
							| 7 |  | 0fallfac |  |-  ( N e. NN -> ( 0 FallFac N ) = 0 ) | 
						
							| 8 | 6 7 | eqtrid |  |-  ( N e. NN -> ( -u 0 FallFac N ) = 0 ) | 
						
							| 9 | 8 | oveq2d |  |-  ( N e. NN -> ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) = ( ( -u 1 ^ N ) x. 0 ) ) | 
						
							| 10 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 11 |  | expcl |  |-  ( ( -u 1 e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) | 
						
							| 12 | 10 2 11 | sylancr |  |-  ( N e. NN -> ( -u 1 ^ N ) e. CC ) | 
						
							| 13 | 12 | mul01d |  |-  ( N e. NN -> ( ( -u 1 ^ N ) x. 0 ) = 0 ) | 
						
							| 14 | 4 9 13 | 3eqtrd |  |-  ( N e. NN -> ( 0 RiseFac N ) = 0 ) |