| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | risefallfac | ⊢ ( ( 0  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  RiseFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 0  FallFac  𝑁 ) ) ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  RiseFac  𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 0  FallFac  𝑁 ) ) ) | 
						
							| 5 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 6 | 5 | oveq1i | ⊢ ( - 0  FallFac  𝑁 )  =  ( 0  FallFac  𝑁 ) | 
						
							| 7 |  | 0fallfac | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  FallFac  𝑁 )  =  0 ) | 
						
							| 8 | 6 7 | eqtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( - 0  FallFac  𝑁 )  =  0 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 0  FallFac  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  0 ) ) | 
						
							| 10 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 11 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 12 | 10 2 11 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 13 | 12 | mul01d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( - 1 ↑ 𝑁 )  ·  0 )  =  0 ) | 
						
							| 14 | 4 9 13 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  RiseFac  𝑁 )  =  0 ) |